Redox Biogeochemistry

Research in this area is directed towards characterizing the redox properties and reactivities of major organic and mineral geochemical phases in the environment. We combine mediated electrochemical analyses, a novel electrochemical approach developed in our research group, with spectroscopy measurements to determine the capacities of geochemical phases to accept and donate electrons, the reversibility of electron transfer to and from geochemical phases, the reduction potentials at which electrons are transferred.

Geochemical phases under investigation include natural organic matter, both in dissolved and particulate forms, biochariron-bearing clay minerals, and, most recently, iron (oxyhydr)oxides. In addition, we study electron transfer to and from lake sediments which contain different redox active species and phases.

Selected key publications are:

Description of mediated electrochemical analyses

Sander, M., T.B. Hofstetter, C.A. Gorski. Electrochemical analyses of redox-active iron minerals: A review of non-mediated and mediated approaches. Environ Sci Technol, 2015, 49, 5862-5878. DOI: external page10.1021/acs.est.5b00006

Aeschbacher, M., M. Sander, and R.P. Schwarzenbach. Novel Electrochemical Approach to Assess the Redox Properties of Humic Substances. Environ Sci Technol, 2010, 44, 87–93; DOI: external page10.1021/es902627p

Natural organic matter

Wallace, G., M. Sander, Y.-P. Chin, and W. A. Arnold. Quantifying the electron donating capacities of sulfide and dissolved organic matter in sediment pore waters of wetlands. Environmental Sciences: Processes & Impacts. 2017, 19, 758-767, DOI: external page10.1039/C7EM00060J

Walpen, N., M. Schroth, M. Sander. Quantification of phenolic antioxidant moieties in dissolved organic matter by flow-injection analysis with electrochemical detection. Environ Sci Technol, 2016, 50, 6423-6432; DOI: external page10.1021/acs.est.6b01120

Poggenburg, C., R. Mikutta, M. Sander, A. Schippers, A. Marchanka, R. Dohrmann, G. Guggenberger. Microbial reduction of ferrihydrite-organic matter coprecipitates by Shewanella putrefaciens and Geobacter metallireducens in comparison to mediated electrochemical reduction. Chemical Geology, 2016, 447, 133-147; DOI: external page10.1016/j.chemgeo.2016.09.031

Wenk, J., M. Aeschbacher, M. Sander, U. von Gunten, and S. Canonica. Photosensitizing and inhibitory effects of ozonated dissolved organic matter on triplet-induced contaminant transformation. Environ Sci Technol, 2015, 49, 8541–8549; DOI: external page10.1021/acs.est.5b02221

L.C. Bodhipaksha, C. M. Sharpless, Y.-P. Chin, M. Sander, W.K. Langston, and A. A. MacKay. Triplet photochemistry of effluent and natural organic matter in whole water and isolates from effluent-receiving rivers. Environ Sci Technol, 2015, 49, 3453–3463. DOI: external page10.1021/es505081w

Klüpfel, L., A. Piepenbrock, A. Kappler, and M. Sander. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nature Geoscience, 2014, 7, 195-200. DOI: external page10.1038/ngeo2069

Page, S.E., G.W. Kling, M. Sander, K.H. Harrold, J.R. Logan, K. McNeill, and R.M. Cory. Dark formation of Hydroxyl radical in Arctic Soils and Surface waters. Environ Sci Technol, 2013, 47, 12860-12867. DOI: external page10.1021/es4033265

Wenk, J., M. Aeschbacher, E. Salhi, S. Canonica, U. von Gunten, and M. Sander. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: Effects on its optical and antioxidant properties. Environ Sci Technol, 2013, 47, 11147-11156. DOI: external page10.1021/es402516b

Aeschbacher, M., C. Graf, R.P. Schwarzenbach, and M. Sander. Antioxidant properties of humic substances. Environ Sci Technol, 2012, 46, 4916-4925. external pageDOI:external page10.1021/es300039h

Page, S.E., M. Sander, W.A. Arnold, K. McNeill. Hydroxyl radical formation upon oxidation of reduced humic acids by oxygen in the dark. Environ Sci Technol, 2012, 46, 1590-1597. external pageDOI:external page10.1021/es20386f

Aeschbacher, M., D. Vergari, R.P. Schwarzenbach, and M. Sander. Electrochemical Analysis of Proton and Electron Transfer Equilibria of the Reducible Moieties in Humic Acids. Environ Sci Technol, 2011, 45, 8385–8394. external pageDOI:external page10.1021/es201981g

Aeschbacher, M., M. Sander, and R.P. Schwarzenbach. Novel Electrochemical Approach to Assess the Redox Properties of Humic Substances. Environ Sci Technol, 2010, 44, 87–93; external pageDOI: 10.1021/es902627p

Biochar

Klüpfel, L., M. Keiluweit, M. Kleber, and M. Sander. Redox properties of plant biomass-derived carbon black (biochar). Environ Sci Technol, 2014, 48, 5601-5611. external pageDOI: 10.1021/es500906d

Iron (oxyhydr-)oxides

Aeppli, M., A. Voegelin; C. Gorski, T. Hofstetter, and M. Sander. Mediated electrochemical reduction of iron (oxyhydr-)oxides under defined thermodynamic boundary conditions. Environ Sci Technol. 2017. asap, DOI: external page10.1021/acs.est.7b04483

Hoving, A. L., M. Sander, C. Bruggeman, T. Behrends. Redox properties of clay-rich sediments as assessed by mediated electrochemical analysis: Separating pyrite, siderite and structural Fe in clay minerals. Chemical Geology, 2017, 457, 149-161; external pageDOI:10.1016/j.chemgeo.2017.03.022

Poggenburg, C., R. Mikutta, M. Sander, A. Schippers, A. Marchanka, R. Dohrmann, G. Guggenberger. Microbial reduction of ferrihydrite-organic matter coprecipitates by Shewanella putrefaciens and Geobacter metallireducens in comparison to mediated electrochemical reduction. Chemical Geology, 2016, 447, 133-147; DOI: external page10.1016/j.chemgeo.2016.09.031

Gorski, G., R. Edwards, M. Sander, T.B. Hofstetter, and S. M. Stewart. Thermodynamic Characterization of Iron Oxide-Aqueous Fe2+ Redox Couples. Environ Sci Technol, 2016, asap; external pageDOI:10.1021/acs.est.6b02661

Iron-bearing clay minerals

Hoving, A. L., M. Sander, C. Bruggeman, T. Behrends. Redox properties of clay-rich sediments as assessed by mediated electrochemical analysis: Separating pyrite, siderite and structural Fe in clay minerals. Chemical Geology, 2017, 457, 149-161; external pageDOI:10.1016/j.chemgeo.2017.03.022

Sander, M., T.B. Hofstetter, C.A. Gorski. Electrochemical analyses of redox-active iron minerals: A review of non-mediated and mediated approaches. Environ Sci Technol, 2015, 49, 5862-5878. DOI: external page10.1021/acs.est.5b00006

Gorski, C.A., L. Klüpfel, A. Voegelin, M. Sander, and T.B. Hofstetter. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties. Environ Sci Technol, 2013, 47, 13477-13485. external pageDOI: 10.1021/es403824x

Gorski, C., L. Kluepfel, A. Voegelin, M. SanderT.B. Hofstetter. Redox properties of structural Fe in clay minerals: 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1. Environ Sci Technol, 2012, 46, 9369-9377. external pageDOI: 10.1021/es302014u

Gorski, C., M. Aeschbacher, D. Soltermann, A. Voegelin, B. Baeyens, M. Marques Fernandes, T.B. HofstetterM. Sander. Redox properties of structural Fe in clay minerals: 1. Electrochemical quantification of electron donating and accepting capacities of smectites. Environ Sci Technol, 2012, 46, 9360-9368. external pageDOI: 10.1021/es3020138

Sediments

Hoving, A. L., M. Sander, C. Bruggeman, T. Behrends. Redox properties of clay-rich sediments as assessed by mediated electrochemical analysis: Separating pyrite, siderite and structural Fe in clay minerals. Chemical Geology, 2017, 457, 149-161; external pageDOI:10.1016/j.chemgeo.2017.03.022

Lau, M., M. Sander, J. Gelbrecht, and M. Hupfer. Spatiotemporal redox dynamics in a freshwater lake sediment under alternating oxygen availabilities: combined analyses of dissolved and particulate electron acceptors. Environmental Chemistry, 2016, external pageasap

Lau, M., M. Sander, J. Gelbrecht, M. Hupfer. Solid phases as important electron acceptors in freshwater organic sediments. Biogeochemistry, 2015, 123, 49-61. external pageDOI: 10.1007/s10533-014-0052-5

Collaborations

Redox properties of iron-bearing clay minerals and iron (oxyhydr)oxides

external pageThomas B. Hofstetter (Eawag, Switzerland), external pageChristopher A. Gorski (Penn State University, USA), external pageAndreas Vögelin (Eawag, Switzerland), external pageThilo Behrends (Utrecht University, The Netherlands)

Redox properties of Natural Organic Matter

external pageSilvio Canonica (Eawag, Switzerland); external pageUrs von Gunten (Eawag & EPFL, Switzerland), external pageJannis Wenk (University of Bath, Great Britain), external pageCharles Sharpless (University of Mary Washington, USA), external pageAndreas Kappler (Eberhard Karls University Tübingen, Germany), external pageKristopher McNeill (ETHZ, Switzerland), external pageRose Cory (University of Michigan, USA)

Redox properties of biochar

external pageMarco Keiluweit (University of Massachusetts, USA); external pageMarkus Kleber (Oregon State University, Switzerland)

Redox properties of Lake Sediments

external pageMaximilian Lau, external pageJörg Gelbrecht, external pageMichael Hupfer (all IGB Berlin, Germany), external pageBeat Müller (Eawag, Switzerland)

JavaScript has been disabled in your browser