Environmental (Bio)Macromolecular Chemistry

Environmental (Bio)Macromolecular Chemistry (= Environmental Chemistry of (Bio)Macromolecules) is a relatively new research area in the larger field of Environmental Organic Chemistry. Research in this area focusses on the fate (i.e., distribution, transformation and activity) of (bio)macromolecules of environmental concern and/or biogeochemical importance in natural and engineered systems. These molecules include -but are not limited to- agrochemical bioregulators (e.g., transgenic Cry proteins from Bt crops), enzymes, nucleic acids, viruses, synthetic organic polymers and natural organic matter.

Our work focuses on (i) the adsorption mechanisms of (bio)macromolecules to solid-water interfaces, (ii) the effects of adsorption on the transport and the activity of these molecules, and (iii) the rates and extents of transformation and breakdown of these molecules in natural systems. 

Past and ongoing research in this area focusses on transgenic insecticidal Cry proteins (released from genetically modified Bt crops), enzymes and proteins (including oligopeptides and amino acids), dissolved organic matterviruses, and synthetic organic polymers

Selected key publications are:

Viruses at solid-water interfaces

Armanious, A., M. Münch, T. Kohn, and M. Sander. Competitive co-adsorption dynamics of viruses and dissolved organic matter to positively charged sorbent surfaces. Environ Sci Technol, 2016, 50 (7), 3567-3606; DOI: external page10.1021/acs.est.5b05726

Armanious, A., M. Aeppli, R. Jacak, D. Refardt, T. Sigstam, T. Kohn, and M. Sander. Viruses at solid-water interfaces: A systematic assessment of interactions driving adsorption. Environ Sci Technol, 2016, 50 (2), 732-743; DOI: external page10.1021/acs.est.5b04644

Enzymatic hydrolysis of (biodegradable) synthetic polyesters

Weinberger, S., K. Haernvall., D. Scaini, G. Ghazaryan, M.T. Zumstein, M. Sander, A. Pellis, and G.M. Guebitz. Enzymatic surface hydrolysis of poly(ethylene furanoate) thin films of various crystallinities. Green Chem. 2017, 19, 5581-5384, DOI: external page10.1039/C7GC02905E

Haernvall, K., S. Zitzenbacher, H. Amer, M. T. Zumstein, M. Sander, K.McNeill, M. Yamamoto, M. B. Schick, D. Ribitsch and G. M. Guebitz. Polyol structure influences enzymatic hydrolysis of bio-based 2,5-furandicarboxylic acid (FDCA) polyesters. Biotechnology Journal, 2017, 12, 1600741, DOI: external page10.1002/biot.201600741

Zumstein, M., D. Rechsteiner, N. Roduner, V. Perz, D. Ribitsch, G. Guebitz, H.-P. Kohler, K. McNeill, M. Sander. Enzymatic hydrolysis of polyester thin films at the nanoscale: effects of polyester structure and enzyme active-site accessibility. Environ. Sci. Technol., 2017, 51, 7476-7485, DOI: external page10.1021/acs.est.7b01330

Gamerith, C., M. Vastano, S. Ghorbanpour, S. Zitzenbacher, D. Ribitsch, M.T. Zumstein, M. Sander, E.H. Acero, A. Pellis, and G. M. Gübitz. Enzymatic Degradation of Aromatic and Aliphatic Polyesters by P. pastoris Expressed Cutinase 1 from Thermobifida cellulosilytica. Frontiers in Microbiology. 2017, volume 8, article 938; DOI: external page10.3389/fmicb.2017.00938

Zumstein, M. T., H.-P. Kohler, K. McNeill, and M. Sander. High-throughput analysis of enzymatic hydrolysis of biodegradable polyesters by monitoring co-hydrolysis of a polyester-embedded fluorogenic probe. Environ Sci Technol, 2017, asap; DOI: external page10.1021/acs.est.6b06060

Zumstein, M.T.; H.-P. Kohler, K. McNeill, M. Sander. Enzymatic Hydrolysis of polyester thin films: real.time analysis of film mass changes and dissipation dynamics. Environ Sci Technol, 2016, 50 (1), 197-206; DOI: external page10.1021/acs.est.5b04103

Perz, V. ; M.T. Zumstein, M. Sander, S. Zitzenbacher, D. Ribitsch, G.M. Gübitz. Biomimetic approach to enhance enzymatic hydrolysis of the synthetic polyester poly(1,4-butylene adipate) - Fusing binding modules to esterases. Biomacromolecules, 2015, 16 (12), 3889-3896, DOI: external page10.1021/acs.biomac.5b01219

Plant incorporated protectants (Cry Proteins & PIPs)

Parker K., and M. Sander. Environmental fate of insecticidal plant-incorporated protectants from genetically modified crops: Knowledge gaps and research opportunities. Environ Sci Technol. 2017. 51 (21), 12049-12057, DOI: external page10.1021/acs.est.7b03456

Tomaszewsk, J.E., M. Madliger, J.A. Pedersen, R.P. Schwarzenbach, and M. Sander. Adsorption of insecticidal Cry1Ab protein to humic substances. 2. Influence of humic and fulvic acid charge and polarity characteristics. Environ Sci Technol, 2012, 46, 9932-9940. DOI: external page10.1021/es302248u

Sander M., J.E. Tomaszewski, M. Madliger, and R.P. Schwarzenbach. Adsorption of insecticidal Cry1Ab protein to humic substances. 1. Experimental approach and mechanistic aspects. Environ Sci Technol, 2012, 46, 9923-9931. DOI: external page10.1021/es3022478

Madliger,M., C.A. Gasser, R.P. Schwarzenbach, M. Sander, Adsorption of Transgenic Insecticidal Cry1Ab Protein to Silica Particles. Effects on Transport and Bioactivity, Environ Sci Technol, 2011, 45, 4377-4384.external pageDOI: 10.1021/es200022q

M. Madliger, M. Sander, R.P. Schwarzenbach, Adsorption of Transgenic Insecticidal Cry1Ab Protein to SiO2 2. Patch-Controlled Electrostatic Attraction, Environ Sci Technol. 2010, 44, 8877-8883. external pageDOI: 10.1021/es103007u

M. Madliger, M. Sander, R.P. Schwarzenbach, Adsorption of Transgenic Insecticidal Cry1Ab Protein to SiO2 1. Forces Driving Adsorption, Environ Sci Technol, 2010, 44, 8870-8876. external pageDOI: 10.1021/es103008s

Enzymes, oligopeptides, and amino acids

Lundeen, R. A., C. Chu, M. Sander, K. McNeill. Photooxidation of the antimicrobial, nonribosomal peptide bacitracin A by singlet oxygen under environmentally relevant conditions. Environ Sci Technol, 2016, 50, 8586-8595; DOI: external page10.1021/acs.est.6b01131

Chu, C.; R. Lundeen, M. Sander, K. McNeill. Assessing the indirect photochemical transformation of dissolved combined amino acids through the use of systematically designed histidine-containing oligopeptides. Environ Sci Technol, 2015, 49, 12798-12807; DOI: external page10.1021/acs.est.5b03498

Chu, C.; R. Lundeen, C. Remucal, M. SanderK. McNeill. Enhanced indirect photochemical transformation of histidine and histamine through association with chromophoric dissolved organic matter. Environ Sci Technol, 2015, 49, 5511-5519. DOI: external page10.1021/acs.est.5b00466

Tomaszewski, J.E., R.P. Schwarzenbach, and M. Sander, Protein Encapsulation by Humic Substances. Environ Sci Technol, 2011, 45, 6003–6010. external pageDOI: 10.1021/es200663h

Dissolved Organic Matter

Armanious, A., Aeppli, M. and M. Sander. Dissolved organic matter adsorption to model surfaces: adlayer formation, properties and dynamics at the nanoscale. Environ Sci Technol, 2014, 48, 9420–9429. DOI: external page10.1021/es5026917

Remucal, C., R. Cory, M. Sander, K. McNeill. Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and Orbitrap mass spectrometry. Environ Sci Technol, 2012, 46, 9350-9359. external page10.1021/es302468q

Collaborations

Environmental Fate of Cry proteins

external pageJoel A. Pedersen (University of Wisconsin, USA); external pageJörg Romeis, external pageMichael Meissle (both agroscope Reckenholz, Switzerland)

Environmental Fate of Viruses

external pageTamar Kohn (EPFL, Switzerland), external pageAntonius Armanious (Chalmers, Sweden)

Environmental Fate of synthetic organic polymers

external pageHans-Peter Kohler (eawag, Switzerland); external pageKristopher McNeill (ETHZ, Switzerland)

 

JavaScript has been disabled in your browser